ОБ ОДНОМ ПЕРИОДИЧЕСКОМ РЕШЕНИИ НЕЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ИМПУЛЬСНЫМИ ВОЗДЕЙСТВИЯМИ

Mualliflar

  • Юлдашев Турсун Камалдинович Tashkent State University of Economics image/svg+xml

DOI:

https://doi.org/10.55439/yutsftim/592

Kalit so‘zlar:

импульсные интегро-дифференциальные уравнения, нелокальное условие, оператор интегро-дифференцирования Герасимова-Капуто, нелинейная диф- ференциальная система.

Abstrak

Дифференциальные уравнения с импульсными воздействиями имеют
большое приложение в современной науке и технологии [1-6]. Появляются много
работ, посвященные изучению нелокальных краевых задач для дифферен-
циальных уравнений с импульсными воздействиями (см., напр., [7-13]).

References

Benchohra M., Henderson J., Ntouyas S.K. Impulsive differential equations and inclusions. Contemporary mathematics and its application. New York: Hindawi Publishing Corporation, 2006.

Boichuk A.A., Samoilenko A.M. Generalized inverse operators and fredholm boundary-value problems. Utrecht; Brill, 2004.

Boichuk A.A., Samoilenko A.M. Generalized inverse operators and Fredholm boundary-value problems (2nd ed.). Berlin - Boston: Walter de Gruyter GmbH, 2016. 314p.

Lakshmikantham V., Bainov D.D., Simeonov P.S. Theory of impulsive differential equations. Singapore: World Scientific, 1989. 434 p.

Perestyk N.A., Plotnikov V.A., Samoilenko A.M., Skripnik N.V. Differential equations with impulse effect: multivalued right-hand sides with discontinuities. DeGruyter Stud. V.40. Math. Berlin: Walter de Gruter Co., 2011.

Samoilenko A.M., Perestyk N.A. Impulsive differential equations. Singapore: World Sci., 1995.

Annamalai Anguraj, Mani Mallika Arjunan. Existence and uniqueness of mild and classical solutions of impulsive evolution equations // Elect. J. of Differential Equations, 2005, vol. 111, P. 1-8

Ashyralyev A., Sharifov Y.A. Existence and uniqueness of solutions for nonlinear impulsive differential equations with two–point and integral boundary conditions // Advances in Difference Equations, 2013, vol. 2013, № 173.

Bin L., Xinzhi L., Xiaoxin L. Robust global exponential stability of uncertain impulsive systems // Acta Mathematika Scientia, 2005, vol. 25, № 1, P. 161-169.

Ji Sh., Wen Sh. Nonlocal Сauchy problem for impulsive differential equations in Banach spaces // Intern. J. of Nonlinear Science, 2010, vol. 10, № 1, P. 88-95.

Yuldashev T. K. Periodic solutions for an impulsive system of nonlinear differential equations with maxima // Nanosystems: Phys. Chem. Math., 2022, vol. 13,n № 2, Р. 135-141.

Yuldashev T. K., Fayziev A. K. On a nonlinear impulsive system of integrodifferential equations with degenerate kernel and maxima // Nanosystems: Phys. Chem. Math., 2022, vol. 13, № 1, Р. 36–44.

Yuldashev T. K., Fayziev A. K. Integral condition with nonlinear kernel for an impulsive system of differential equations with maxima and redefinition vector //

Lobachevskii Journ. Math., 2022, vol. 43, № 8, Р. 2332-2340.

Area I., Batarfi H., Losada J., Nieto J.J., Shammakh W. and Torres A. On a fractional order Ebola epidemic model // Adv. El. J. Differ. Equations, 2015. vol. 1, №

Handbook of Fractional Calculus with Applications. Vols. 1-8. Tenreiro Machado J.A. (ed.). Berlin, Boston: Walter de Gruyter GmbH, 2019.

Hussain A., Baleanu D. and Adeel M. Existence of solution and stability for the fractional order novel coronavirus (nCoV-2019) model // Adv. in Differ Equations, 2020, vol. 384. 268

Kumar D., Baleanu D. Editorial: fractional calculus and its applications in physics // Front. Phys., 2019, vol. 7, № 6.

Yuldashev T. K., Abdullaev O. Kh. Unique solvability of a boundary value problem for a loaded fractional parabolic-hyperbolic equation with nonlinear terms // Lobachevskii Journal of Mathematics, 2021, vol. 42, no. 5, pp. 1113–1123.

Yuldashev T. K., Kadirkulov B. J. Nonlocal problem for a mixed type fourthorder differential equation with Hilfer fractional operator // Ural Math. J. 2020, vol.

, № 1, Р. 153-167.

Yuldashev T. K., Kadirkulov B. J. Inverse boundary value problem for a fractional differential equations of mixed type with integral redefinition conditions // Lobachevskii Journal of Mathematics, 2021, vol. 42, № 3, Р. 649-662.

Yuldashev T. K., Karimov E. T. Inverse problem for a mixed type integrodifferential equation with fractional order Caputo operators and spectral parameters // Axioms, 2020, vol. 9, № 4 (121), Р. 1-24.

Yuldashev T. K. Periodic solutions for an impulsive system of nonlinear differential equations with maxima // Наносистемы: физика, химия, математика,2022, vol. 13, № 2, P. 135-141.

Nashr qilingan

2023-06-23

How to Cite

Юлдашев Турсун Камалдинович. (2023). ОБ ОДНОМ ПЕРИОДИЧЕСКОМ РЕШЕНИИ НЕЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ИМПУЛЬСНЫМИ ВОЗДЕЙСТВИЯМИ. “YANGI O‘ZBEKISTON TARAQQIYOT STRATEGIYASIDA FAN VA TA’LIM INTEGRATSIYASI MASALALARI” Mavzusidagi Respublika ilmiy–amaliy Anjumani MAQOLALAR TO’PLAMI, 1(1), 263–268. https://doi.org/10.55439/yutsftim/592