THRESHOLD ANALYSIS OF THE NON-LOCAL DISCRETE SCHRÖDINGER OPERATOR WITH ONE-RANK PERTURBATION

Mualliflar

  • Akhralov Khamidullakhon Ziyatovich
  • Turapova Aziza Usmanovna Tashkent State University of Economics image/svg+xml

DOI:

https://doi.org/10.55439/yutsftim/576

Kalit so‘zlar:

Essential spectrum, threshold resonance, threshold eigenvalue, regular point.

Abstrak

The behaviour of the embedded eigenvalues and resonances is discussed at the
lower threshold of the essential spectrum of non-local discrete Schrödinger operators
with the Kroneker  - potential with the mass   0. This operator is constructed by
taking a strictly increasing C function of the standard discrete Laplacian instead of
the original one. The dependence of the existence of resonances on this function and
the lattice dimension are explicitly derived. We study the limits of eigenvalues as
 Z  and 0  ]  , where 0  is the value of  which provides there existence of
the threshold resonance.

References

S. Albeverio, S Lakaev, K. Makarov, Z. Muminov, “The threshold effects for the two-particle Hamiltonians on lattices, ” Commun. Math. Phys. 262, 91–115 (2006).

A. Mogilner, “Hamiltonians in solid-state physics as multiparticle discrete Schrödinger operators: problems and results,” Adv. in Sov. Math. 5, 139–194 (1991).

G. Graf, D. Schenker, “2-magnon scattering in the Heisenberg model,” Ann. Inst. Henri Poincare, Phys. Theor. 67, 91–107 (1997).

D. Damanik, D. Hundertmark, R. Killip, B. Simon, “Variational estimates for discrete Schrödinger operators with potentials of indefinite sign,” Comm. Math. Phys. 238, 545–562 (2003).

D. Mattis, “The few-body problem on a lattice,” Rev. Mod. Phys. 58(2), 361– 379 (1986).

D. Damanik, G. Teschl, “Bound states of discrete Schrödinger operators with super-critical inverse square potentials,” Proc. Amer. Math. Soc. 135, 1123–1127 (2007).

I. Egorova, E. Kopylova, G. Teschl, “Dispersion estimates for onedimensional discrete Schrödinger and wave equations,” J. Spectr. Theory 5, 663–696 (2015).

S. Lakaev, A. Khalkhuzhaev, Sh. Lakaev, “Asymptotic behavior of an eigenvalue of the two-particle discrete Schrödinger operator,” Theoret. Math. Phys. 171, 800–811 (2012).

S. Lakaev, Sh. Kholmatov, “Asymptotics of eigenvalues of two-particle Schrödinger operators on lattices with zero range interaction,” J. Phys. A: Math. Theor. 44, (2011).

F. Luef, G. Teschl, “On the finiteness of the number of eigenvalues of Jacobi operators below the essential spectrum,” J. Difference Equ. Appl. 10, 299–307 (2004).

D. Jaksch et al, “Cold bosonic atoms in optical lattices,” Phys. Rev. Lett. 81, 3108–3111 (1998).

M. Lewenstein, A. Sanpera, A. Ahufinger, “Ultracold Atoms in Optical Lattices. Simulating Quantum Many-Body Systems,” Oxford University Press, Oxford, (2012).

S.N.Lakaev and Z.I.Muminov, “The Asymptotics of the Number of Eigenvalues of a Three-Particle Lattice Schrödinger Operator,” Funktsionalnyi Analiz i Ego Prilozheniya, 37(3), 80–84, (2003).

K. Winkler et al., “Repulsively bound atom pairs in an optical lattice,” Nature 441, 853-856 (2006).

M. Klaus, B. Simon, “Coupling constant thresholds in nonrelativistic quantum mechanics. I. Short-range two-body case,” Ann. Phys. 130, 251–281 (1980).

S. Lakaev, Sh. Kholmatov, “Asymptotics of the eigenvalues of a discrete Schrödinger operator with zero-range potential,” Izvestiya: Mathematics 76, 946–966

(2012).

S. Albeverio, S. Lakaev, Z. Muminov, “Schrödinger operators on lattices. The Efimov effect and discrete spectrum asymptotics,” Ann. Inst. H.

Downloads

Nashr qilingan

2023-06-23

How to Cite

Akhralov Khamidullakhon Ziyatovich, & Turapova Aziza Usmanovna. (2023). THRESHOLD ANALYSIS OF THE NON-LOCAL DISCRETE SCHRÖDINGER OPERATOR WITH ONE-RANK PERTURBATION. “YANGI O‘ZBEKISTON TARAQQIYOT STRATEGIYASIDA FAN VA TA’LIM INTEGRATSIYASI MASALALARI” Mavzusidagi Respublika ilmiy–amaliy Anjumani MAQOLALAR TO’PLAMI, 1(1), 292–300. https://doi.org/10.55439/yutsftim/576