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Abstract 

The behaviour of the embedded eigenvalues and resonances is discussed at the 

lower threshold of the essential spectrum of non-local discrete Schrödinger operators 

with the Kroneker   - potential with the mass 0  . This operator is constructed by 

taking a strictly increasing C  function of the standard discrete Laplacian instead of 

the original one. The dependence of the existence of resonances on this function and 

the lattice dimension are explicitly derived. We study the limits of eigenvalues as 

 Z  and 
0 ] , where 

0  is the value of   which provides there existence of 

the threshold resonance.  

Аннотация 

Обсуждается поведение вложенных собственных значений и резонансов на 

нижнем пороге существенного спектра нелокальных дискретных операторов 

Шредингера с потенциалом Кронекера   и массой 0  . Этот оператор 

строится путем взятия строго возрастающей C -функции стандартного 

дискретного лапласиана вместо исходной. Зависимость существования 

резонансов от этой функции и размера решетки выводится в явном виде. 

Исследуем пределы собственных значений как  Z  и 
0 ] , где 

0  — 

значение  , обеспечивающее существование порогового резонанса. 
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Introduction 

In the fields of quantum mechanics, mathematical physics, mathematical analysis 

and related fields spectral properties of Schrödinger operators, including lattice 

Schrödinger operators and their solids the applications in physics are significant. The 

spectral properties of discrete Schrödinger operators with the standard dispersion 

relation function (i.e., behaves as 
=1

( ) = (1 cos )
d

jj
e p p  have been extensively 

studied in recent years (see e.g. [1-9] and references therein) because of their 

applications in the theory of ultracold atoms in optical lattices [10,11]. In particular, it 
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is well-known that the existence of the discrete spectrum is strongly connected to the 

threshold phenomenon [7, 8, 12, 13], which plays an role in the existence of the Efimov 

effect in threebody systems [14-16]: if any two-body subsystem in a three-body system 

has no bound state below its essential spectrum and at least two two-body subsystem 

has a zero-energy resonance, then the corresponding three-body system has infinitely 

many bound states whose energies accumulate at the lower edge of the three-body 

essential spectrum. 

In the works [17, 18], were considered in the d   dimensional lattice a family of 

the discrete Shrödinger operators depending on two parameters with a potential 

constructed via the delta function. The existence of eigenvalues, threshold eigenvalues 

and threshold resonances and their dependence on the parameters of the operator and 

dimension of the lattice was studied. 

The fourth order elliptic operators in the space 
dR  in particular, the biharmonic 

operator, play also a central role in a wide class of physical models such as linear 

elasticity theory, rigidity problems and in stream function formulation of Stoke’s flows 

(see e.g. [14, 19] and references therein). 

A representation of eigenvalues and eigenfunctions, asymptotic formula of 

eigenvalues and some spectral properties for the pseudo-differential operator and 

fractional Schrödinger operators have been considered in [20, 21, 22, 23]. In [27], the 

authors introduced a class of generalized Schrödinger operators whose kinetic term is 

given by so called Bernstein functions of the Laplacian. 

In this paper, we consider generalized discrete Schrödinger operators (i.e., non-

local discrete Schrödinger operators) which include discrete bilaplacian operators [17] 

discrete fractional Schrödinger operators, and others whose counterparts on the 

continuos 
2L -space are currently much studied [24, 25, 26, 28, 29]. We investigate the 

existence of eigenvalues as well as threshold resonance and bound states of the non-

local discrete Schrödinger operator defined by (2). 

Non-local Schrödinger operator 

 Let =[ , )d d T  be the d -dimensional torus ( =1,2,...)d , 2( )dL T  be the Hilbert 

space of 
2L -functions on 

dT  and 2( )dZ  be the Hilbert space of 
2
- functions on the 

d   dimensional lattice 
dZ . 

Let   be the standart discrete Laplacian on 2( )dZ  defined by  

 
2

| |=1

1ˆ ˆ ˆ ˆ( )( ) = ( ( ) ( )), ( ),
2

d

s

f x f x s f x f    Z  

 and ,0
ˆ = xV   be a potential defined by the Kroneker  -function with mass 

( ) R  concentrated on the origin = 0x  in 
dZ : 

 2
ˆ ( ), = 0ˆ ˆˆ( )( ) = , ( ), .
0, 0

d df x if x
Vf x f x

if x


 


Z Z  

Then the discrete Schrödinger operator with the  -potential has the form  

 ,0
ˆ = , .xh    R  
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In order to define a non-local version of ĥ , we use the Fourier transform 
2 2: ( ) ( )d dLZ TF  defined by  

 
( , ) 2

2

1ˆ ˆ ˆ( )( ) = ( ) , ( ), ,

(2 )

i x p d d

d
dx

f p f x e f p







 
Z

Z TF  

whose inverse acts from 2( )dL T  to 2( )dZ  as  

 
1 ( , ) 2

2

1
( )( ) = ( ) , ( ), .

(2 )

i x t d d

d

d

f x f t e dt f L x



  
T

T ZF  

Hence the discrete Laplacian   is transformed into the multiplication operator 

as 1

0 = :h  F F   

 2

0( )( ) = ( ) ( ), ( ),dh f p e p f p f L T  

by the function  

 
=1

( ) = (1 cos ), ,
d

d

i

i

e p p p  T  

and V̂  is transformed into the rank one integral operator 1ˆ= :V V F F   

 
21

( )( ) = ( ) , ( ), .
(2 )

d

d

d

Vf p f q dq f L 


 
T

T R  (1) 

In this paper, we use a non-local discrete Laplacian ( )   defined for a suitable 

function   by applying Fourier transform. For a given strictly increasing continuous 

function (0, ),C   we define the non-local discrete Laplacian ( )   by  

  1

0
ˆ = ( ) = ( ) .h e p  F F  

The momentum representation of the non-local discrete Schrödinger operator acts 

in the space 2( )dL T  as  

 
0= ,h h V   (2) 

 where 
0h  is a multiplication operator by the function ( ( )) :e    

 2

0( )( ) = ( ( )) ( ), ( ),dh f p e p f p f L  T  

and V  is defined by (1). 

 

Essential spectrum 

Since h  is selfadjoint and V  is a rank one operator, according to the Weyl’s 

theorem on stability of essential spectrum, the following relation holds  

 ess 0 0 ess min max( ) = ( ), . ., ( ) = [ , ]h V h i e h       

where 
min = ( (0))e   and 

max = ( (2 )).e d   

For any ,R  we define the Fredholm determinant of the operator h  as a 

function of the variable 
min max\ [ ; ]z  C  as follows  

 ( , ) =1 .
(2 ) ( ( ))d

d

dq
z

e q z





 

 
T
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  Lemma 1: The number 
min max\ [ ; ]z  C  is an eigenvalue of operator h  if 

and only if  
 ( , ) = 0.z  

Proof. Suppose that number, 
min max\ [ ; ]z  C  is eigenvalue of operator h . 

Then  

 =h f zf  (3) 

 i.e.,  

 ( ( )) ( ) ( ) = ( )
(2 )d

d

e p f p f q dq zf p



  

T

 (4) 

 equation has a non-trivial solution 2( )df L T . It is clear to see the equation (3) 

has a non-trivial solution, if and only if 

 1 = 0
(2 ) ( ( ))

f d

d

dq
C

e p z





 
 

  
 


T

(5) 

 has a non-trivial solution 
fC C , where solutions of (4) and (5) are related by 

the equalities,  

 = ( )f

d

C f q dq
T

 

 and  

 ( ) =
(2 ) ( ( ))

f

d

C
f p

e p z



  
 

 The equation (5) has a non-trivial solution if and only if.  

 ( , ) =1 = 0.
(2 ) ( ( ))d

d

dq
z

e q z





 

 
T

 

Definition 1: (Threshold eigenvalue and threshold resonance). Let the a 

measurable (non-trivial) function f  in 
dT  be solution of the equation = ( (0))h f e f   

a) If 2( )df L T  we say that the number ( (0))e  is a lower threshold eigenvalue 

of the operator h . 

b) If 1 2( ) \ ( )d df L L T T  we say that the number ( (0))e  is a lower threshold 

resonance of the operator h . 

c) If 
1( ) \ ( )d df L L T T  for any (0 < <1)   we say that number ( (0))e  is a 

lower super threshold resonance of operator h . 

d) If = ( (0))h f e f   equation has only trivial solution, the number ( (0))e  is a 

regular point of operator h .  

In order to obtain the main results, we assume that the following condition : 
 Hypothesis 1. Let  

 1 2| (0) | | ( ) ( (0)) | | (0) |C x e x e C x e        

for some 0 < 1,   where  
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 1 2
0 0

( ) (0) ( ) (0)
= lim , = lim ,supinf

| | | |x x

x x
C C

x x 
   

   
 

and 
1 20 < <C C . 

We enter the following definition:  

 

1

0 = (2 ) .
( ( )) ( (0))

d

d

dq

e q e
 



 
 
  
 


T

 (6) 

 
Lemma 2: The following two statements are true: 
 (a) If / 2d  , then 

0 = 0 . 

(b) If < / 2d , then 
00 < <  .  

Proof. (a) According to Hypothesis 3 the following relation holds  

 
2(0)

< <
( ( )) ( (0)) (| | )U

d

dq dq
C

e q e q 


 
  

T

 

for some > 0 , where (0) ={ :| 0 |< }dU p p  T  is the ( > 0)   neighborhood 

of the origin = 0.p  If we convert the variables in the last integral to a spherical 

coordinate system it is appropriate to have  

 
1

2

0

< < ,
( ( )) ( (0))

d

d

dq r
C dr

e q e r







 
  

T

 

for some > 0.C  From 2d   it follows that the last integral is divergent that is 

0 = 0 . 

(b) On the other hand, if > 2d   then the integral <
( ( )) ( (0))d

dq

e q e


 
T

 

convergente, and hence 
0 > 0 .  

Lemma 3: The following two statements are true: 
 (a) If 

0> > 0,   the operator h  has a unique (simple) eigenvalue ( )z   in the 

interval ( , ( (0)))e  . 

(b) If 
0 = 0  i.e. 2 d   the operator h  has a simple eigenvalue ( )z   in the 

interval ( , ( (0)))e   for any > 0 .  

Proof. (a) It follows from the relation  

 
2

( , ) = < 0, < ( (0)),
(2 ) ( ( ( )) )d

d

dq
z z e

z e q z







  

  
T

 

that the function ( , )z  is strictly decreasing on ( ; ( (0)))e  . Then the 

relations  

 ( , ) =1lim
z

z


  (7) 

 and  

 
0

( , ( (0))) =1 =1 < 0
(2 ) ( ( )) ( (0))d

d

dq
e

e q e

 


 
   

 
T

  

 imply that the function ( , )z  has a simple zero = ( )z z   in ( ; ( (0)))e  . 
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(b) Since  
 

( (0))

( , ) =lim
z e

z
 

   

and (7) the function ( , )   changes sings in ( , ( (0))e  , end hence the proof 

of (b) is analogy of the proof of (a).  

 Define  

 0

1
( ) = ,

( ( )) ( (0))

df p p
e p e


 

T  (8) 

 (a) If < / 4,d  then inclusion 2

0 ( )df L T  holds. 

There holds the following lemma. 

Lemma 4: The following three statements are true: 

(b) If / 4 < / 2d d , then 1 2

0 ( ) / ( )d df L L T T  holds. 

(c) If / 2d  , then for some (0 < <1)   the relation 
0 ( )df L T  is true.  

Proof. The proof of this lemma we obtain from the validity of following estimates:  

(a) 2

0 2 2 2

(0)

( ) < <
( ( ( )) ( (0))) ((| | ) )

d

d U

dq dq
f L

e q e q 



    
  

T

T   

 
1

4

0

< , > 4 < / 4.
dr

C dr d d
r




 



     

(b) 1 2

0 2

(0)

( ) / ( ) < <
( ( ( )) ( (0))) (| | )

d d

d U

dq dq
f L L

e q e q 



    
  

T

T T   

 
1

2

0

< , > 2 / 4 < / 2.
dr

C dr d d d
r




 



      

(c) 
0 2

(0)

( ) < <
( ( ( )) ( (0))) ((| | ) )

d

d U

dq dq
f L

e q e q



  



    
  

T

T   

1

2

0

< , / 2 >
dr

C dr d
r








     

would be appropriate for any ,0 < < / 2d   .  

a) If < / 4d  the number ( (0))e  is the threshold eigenvalue of the operator h  

b) If / 4 < / 2d d  the number ( (0))e  is the threshold resonance of the 

operator h . 

c) If / 2d   the number ( (0))e  is the regular point of the operator h .  

Now we will formulate the main results of this paper. 

Theorem 1: The following three statements are true: 

Proof. It is easy to see that the equation  

 = ( (0))h g e g   

has a non-zero solution g  when 
0=   and the function g  satisfies  

 
0( ) = ( )g p f p  
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where 
0f  is a function defined in (8) 

It is easy to see that, Definition 3 and Lemma 3 imply the proof.  

 

Theorem 2: Let 
0  be given by (6) and ( )z   be an eigenvalue in Lemma 3. The 

function 
0: ( ; ) ( )z     is real-analytic strictly decreasing convex in 

0( ; )   and 

satisfies  
 

0

( ) = ( (0))lim z e
 




  

and  

 
( )

= (2 ) .lim
dz








  (9) 

  

Proof. The relation  

 
2

( , ) = < 0, < ( (0)),
(2 ) ( ( ( )) )d

d

dq
z z e

z e q z







  

  
T

 

and the Implicit Function Theorem provides the function 
0: ( ; ) ( )z     is 

real-analytic. 

Moreover, computing the derivatives of the implicit function ( )z   we find  

 

1

2

1
( ) = , 0

( ( )) ( ) ( ( ( )) ( ))d d

dq dq
z

e q z e q e
 

  



 
   

    
 

 
T T

 (10) 

 thus using ( ( ( )) ( )) > 0e q z    we get ( ) < 0z  , i.e. ( ( ))e   is strictly 

decreasing in \ {0}.R  Differentiating (10) on more time we get  

 
2

3 2

2 ( )
( ) =

( ( ( )) ( )) ( ( )) ( ) ( ( ( )) ( ))d d d

z dq dq dq
z

e q z e q z e q z




   



 
     

      
 

  
T T T

 

Therefore ( ) > 0z   (i.e. ( )z   is strictly concave) for any .   

To prove (9) first we let   in  

 1=
(2 ) ( ( )) ( )d

d

dq

e q z



  
T

 (11) 

 and find ( ) = .lim e





  In particular, if   is sufficiently large  

 
( ( )) 1

| |<
( ) 2

e q

z 


 

and hence by (11) and the Dominated Convergence Theorem  

 
( )

= = = (2 ) .lim lim
( ( ))

1
( )

d

d d

z dq
dq

e q

z

 








 

  



 

T T
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