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Abstract

The behaviour of the embedded eigenvalues and resonances is discussed at the
lower threshold of the essential spectrum of non-local discrete Schrédinger operators
with the Kroneker ¢ - potential with the mass > 0. This operator is constructed by
taking a strictly increasing C function of the standard discrete Laplacian instead of
the original one. The dependence of the existence of resonances on this function and
the lattice dimension are explicitly derived. We study the limits of eigenvalues as
pul +ooand u] u,, where g, is the value of » which provides there existence of

the threshold resonance.

Annomayusn

Obcysrcoaemest nogedeHUe Bl10HCEHHBIX COOCMBEHHBIX 3HAYEHUN U PE3OHAHCO8 HA
HUJICHEM NOpO2e CYWEeCmE8EeHH020 CNeKmpa HENOKANbHbIX OUCKPEMHbIX ONepamopos
Llpeounecepa ¢ nomenyuanom Kpomexepa 6 u maccou pu>0. Dmom onepamop
cmpoumcsi nymem 3amusi cmpoco eospacmaroweu C-gynkyuu cmanoapmnozo
OUCKPEemHO20 JIanlacuana 6mecmo UCXOOHOU. 3a8UCUMOCMb  CYUeCmeo8aHusl
PE30HAHCO8 Oom 2mou (QYHKYUU U pasmepa peulemku 6bl80OUMCS 8 SA6HOM GUoe.
Hccnedyem npedenvi cobcmeennvix 3navenui kak pZ +0 u ul p,, 20e u, —

3HAa4YeHue U, 06807’18'{1/{861}01/1466 CyulecneoBsaHue nopocoeoco pe3OHAHCA.
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cymecmeeHHbzﬁ cnekmp, I’lOpOZOGblﬁ PE3OHAHC, NOPOcoBOE cobcmeernHoe
SHA4YCHUE, pecyIsipHail moUKda.

Introduction

In the fields of quantum mechanics, mathematical physics, mathematical analysis
and related fields spectral properties of Schrédinger operators, including lattice
Schrédinger operators and their solids the applications in physics are significant. The
spectral properties of discrete Schrodinger operators with the standard dispersion

relation function (i.e., behaves as e(p)=2?:1(1—cos p;) have been extensively

studied in recent years (see e.g. [1-9] and references therein) because of their
applications in the theory of ultracold atoms in optical lattices [10,11]. In particular, it
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Is well-known that the existence of the discrete spectrum is strongly connected to the
threshold phenomenon [7, 8, 12, 13], which plays an role in the existence of the Efimov
effect in threebody systems [14-16]: if any two-body subsystem in a three-body system
has no bound state below its essential spectrum and at least two two-body subsystem
has a zero-energy resonance, then the corresponding three-body system has infinitely
many bound states whose energies accumulate at the lower edge of the three-body
essential spectrum.

In the works [17, 18], were considered in the d — dimensional lattice a family of
the discrete Shrodinger operators depending on two parameters with a potential
constructed via the delta function. The existence of eigenvalues, threshold eigenvalues
and threshold resonances and their dependence on the parameters of the operator and
dimension of the lattice was studied.

The fourth order elliptic operators in the space R in particular, the biharmonic
operator, play also a central role in a wide class of physical models such as linear
elasticity theory, rigidity problems and in stream function formulation of Stoke’s flows
(see e.g. [14, 19] and references therein).

A representation of eigenvalues and eigenfunctions, asymptotic formula of
eigenvalues and some spectral properties for the pseudo-differential operator and
fractional Schrodinger operators have been considered in [20, 21, 22, 23]. In [27], the
authors introduced a class of generalized Schrédinger operators whose Kkinetic term is
given by so called Bernstein functions of the Laplacian.

In this paper, we consider generalized discrete Schrodinger operators (i.e., non-
local discrete Schrodinger operators) which include discrete bilaplacian operators [17]
discrete fractional Schrodinger operators, and others whose counterparts on the
continuos L?-space are currently much studied [24, 25, 26, 28, 29]. We investigate the
existence of eigenvalues as well as threshold resonance and bound states of the non-
local discrete Schrodinger operator defined by (2).

Non-local Schrodinger operator

Let TY =[-7x, 7)° be the d -dimensional torus (d =1,2,...), L*(T*) be the Hilbert
space of L*-functions on T and ¢*(Z°) be the Hilbert space of /- functions on the

d — dimensional lattice Z°.
Let A be the standart discrete Laplacian on ¢*(Z%) defined by

(Af)(%) :%Z(f(xm)— f), ferr@?,
|s|=1
and V = uo, , be a potential defined by the Kroneker ¢ -function with mass
u(u eR) concentrated on the origin x=0 in Z°:

0, iIf x=0
Then the discrete Schrodinger operator with the ¢ -potential has the form
h=-A-uo, neR.

Nf)(x):{”f(x)’ T x=0 ¢ 2z xez®.
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In order to define a non-local version of h, we use the Fourier transform
F 032" — L*(T?) defined by

(FI)P)=—— Y f(0e™™, fer@), peT,
(27[)5 xezd
whose inverse acts from L*(T¢) to ¢*(Z°) as
(F HF)(x) = —— [fme™idt, fel’(T?), xeZz'.
2z)2 T

Hence the discrete Laplacian —A is transformed into the multiplication operator
as hy =—FAF *:

(hLf)(p)=e(p)f(p), fel*(TY),
by the function

d
e(p)=) (1-cosp), peT’
i=1
and «V is transformed into the rank one integral operator /& =FVF *:
1
VE)(p)=—= [ f(a)da, fel’(T"), ueR. (1)
(27) d

In this paper, we use a non-local discrete Laplacian W (—A) defined for a suitable

function W by applying Fourier transform. For a given strictly increasing continuous
function ¥ € C(0,x), we define the non-local discrete Laplacian W (—A) by

hy =¥ (-A) =F “¥(e(p))F.
The momentum representation of the non-local discrete Schrodinger operator acts
in the space L*(T?) as
h,=h—V, ()
where h, is a multiplication operator by the function ¥ (e(-)):

(hF)(p)=P(e(p) f(p), f el (T,
and V is defined by (1).

Essential spectrum
Since h, is selfadjoint and V is a rank one operator, according to the Weyl’s

theorem on stability of essential spectrum, the following relation holds
Oy — V) =0o(ly), e, o (h)=[V Vil
where ¥ . =¥(e(0)) and ¥, =¥ (e(2d)).
For any ueR, we define the Fredholm determinant of the operator h, as a
function of the variable ze C\[\¥ ;¥ ,..] as follows

min ?

A7) =1-—H g
W= Gy | ety -2
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Lemma 1: The number zeC\[¥ ;¥ ] is an eigenvalue of operator h, if

and only if
A(u,z) =0.
Proof. Suppose that number, zeC\[\¥ ;¥ ...] is eigenvalue of operator h,.
Then
h,f=zf (3)
e,
U —
Y(e f — f(q)dg = zf 4
COMOR e j (a)dq = zf (p) (4)

equation has a non-trivial solution f e L*(T?). It is clear to see the equation (3)
has a non-trivial solution, if and only if

C,|1-—t W__l-0)
@r)° 2 W(e(p) -2

has a non-trivial solution C, € C, where solutions of (4) and (5) are related by
the equalities,

C, = [f(a)dq
Td
and

C
f(p)= Lt
(27)" ¥(e(p)) -z
The equation (5) has a non-trivial solution if and only if.

A, z)=1- 4 da__ _y
(27)" % W(e(a) -2

Definition 1: (Threshold eigenvalue and threshold resonance). Let the a

measurable (non-trivial) function f in T be solution of the equation h,f="(0))f

a) If f eL?(T?) we say that the number ¥ (e(0)) is a lower threshold eigenvalue
of the operator h,, .

b) If felX(T)\LA(T?) we say that the number ¥ (e(0)) is a lower threshold
resonance of the operator h, .

o) If felf(T\LY(T?) for any £(0< & <1) we say that number ¥ (e(0)) is a
lower super threshold resonance of operator h,, .

d) If h,f =¥(e(0))f equation has only trivial solution, the number ¥'(e(0)) is a
regular point of operator h, .

In order to obtain the main results, we assume that the following condition :
Hypothesis 1. Let

C,[x—e(0) [*< ¥ (x) —'¥(e(0)) < C, | x—e(0) [
for some 0<a <1, where
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Cl =lim inf w’ CZ =lim Supw
o X[ oo |x[*
and 0<C, <C,.
We enter the following definition:

_ d dg b
=0 “ \P(e(q))—\lf(e(onJ ' ©)

Lemma 2: The following two statements are true:

(@) If a>d/2,then g4, =0.

(b) If a<d/2,then 0< g, <oo.

Proof. (a) According to Hypothesis 3 the following relation holds

j dg < o0& CI d—q <o
¥ (e(q)) —'¥(e(0)) u,0 (| qf*)"

d
forsome y >0, where U (0) ={p e T%:| p—0J< 7} isthe »(» > 0) neighborhood
of the origin p=0. If we convert the variables in the last integral to a spherical

coordinate system it is appropriate to have
dq 1) rdfl
I <oo<:>Cj s—dr <o,
o P(e(q)) —¥(e(0) o T
for some C >0. From d <2« it follows that the last integral is divergent that is
Ho=0.

: : dg
(b) On the other hand, if d>2« then the integral J <o
¥(e(a)) - ¥'(e(0))

1d
convergente, and hence y, >0.
Lemma 3: The following two statements are true:
(@) If 12> 1, >0, the operator h, has a unique (simple) eigenvalue z(x) in the
interval (—oo, ¥ (e(0))).
(b) If 1, =0 i.e. 2a>d the operator h, has a simple eigenvalue z(x) in the
interval (—oo, ¥ (e(0))) for any x>0.
Proof. (a) It follows from the relation
o -__H dg < <
o ™y ety o7 < 2T TEO)
that the function A(w,z) is strictly decreasing on (—oo;¥(e(0))). Then the
relations
limA(x,2) =1 (7)

Z—>-

and

A, W (e(0)) =1— —* & =1-42<0
(1, 'Y (e(0))) 27)° Tjd ¥ (e(q)) — ¥ (e(0)) uo<

imply that the function A(u,z) has a simple zero z = z(u) in (—o; ¥ (e(0))) .
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(b) Since
lim A(u,z)=—o0

72— (e(0))-
and (7) the function A(x,-) changes sings in (—o, ¥ (e(0)), end hence the proof

of (b) is analogy of the proof of (a).
Define

1
f,(p) = , eT! 8
P Seoy-weeoy " ©)
() If @ <d/4, theninclusion f, e *(T") holds.

There holds the following lemma.
Lemma 4: The following three statements are true:

(b)If d/4<a<d/2,then f,el'(T*)/L*(T") holds.
() If ¢>d/2,then for some & (0<e&<1) the relation f, e L°(T?) is true.
Proof. The proof of this lemma we obtain from the validity of following estimates:

2 (- dq dg
f,e (T 00 ——— <o
@ Lt = | Gem-veor " @y
@Cj%dr<w, & d>4a & a<dl/A.
1dy /g 2¢Td dqg dq
b) f,e L(T)/L(T 00 00
O LetMILT = | Gem-veon = g
@Cj%dr<w, & d>2a0 < dld4<a<dl/2.
& d dq dq
f,e (T 00 — <o
@ et @ = | Gem-reon " L@y
<::>C]2 :dr<oo, & di2>ac
r

0
would be appropriate for any ¢,0<e<d/2c.

a) If o <d /4 the number ‘¥'(e(0)) is the threshold eigenvalue of the operator h,

b) If d/4<a<d/2 the number ¥(e(0)) is the threshold resonance of the
operator h,,.

¢) If a>d /2 the number ‘¥'(e(0)) is the regular point of the operator h, .

Now we will formulate the main results of this paper.
Theorem 1: The following three statements are true:
Proof. It is easy to see that the equation

h,g=Y¥(0)9g
has a non-zero solution g when , = 4, and the function g satisfies
9(p) = uf,(p)
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where f, is a function defined in (8)
It is easy to see that, Definition 3 and Lemma 3 imply the proof.

Theorem 2: Let 4, be given by (6) and z(x) be an eigenvalue in Lemma 3. The
function z: (g4;0) — z(z) is real-analytic strictly decreasing convex in (,;+o) and

satisfies
lim z(x) = ¥(e(0))

H= Mg

and
lim 24 = 27y ©)

Proof. The relation

0 U dq
—A(u,2)=— <0, z<Y¥Y(e(0)),
0z (27)° 5 (¥ (e(@) - 2)°
and the Implicit Function Theorem provides the function g: (z4;+0) — z() is
real-analytic.

Moreover, computing the derivatives of the implicit function z(«) we find

z(u)-——j

dq ’ 0 10
‘P(G(Q))—Z(ﬂ)[J (\P(e(q))—e(u)f] T 9

thus using u(‘P(e(q))—z(y))>0 we get z'(u) <0, i.e. W(e()) is strictly
decreasing in R \{0}. Differentiating (10) on more time we get

" )__22 (y)J- dg J dq [I dq J
po (PE@) - 2(1)” 55 Pe@) —2(u) | o (PE@) - 2(w)’
Therefore Z"(Iu) >0 (i.e. z(-) is strictly concave) for any ..
To prove (9) first we let 17— +o0 in
1= £ a9 (11)
(27)" = W(e(q)) — z(x)
and find |ime(x) = —. In particular, if 4 is sufficiently large

H—>+0
|‘P(e(q))|
2(n) 2
and hence by (11) and the Dominated Convergence Theorem
. z(u) _ _
—r=— —|dg=-(2
m=, ,Lmjd . ‘P(e(q)) I q=—(7)"

Z(u)
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