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Abstract 

Eigenvalue behaviour of a family of discrete Schrödinger operators H  

depending on parameters , R  is studied on the three-dimensional lattice 
3Z . The 

non-local potential is described by the Kronecker delta function and the shift operator. 

The existence of eigenvalues below the essential spectrum and their dependence on the 

parameters are explicitely proven. We also show that the essential spectrum absorbes 

the threshold eigenvalue and there exists a particular parabola, on whose left intercept 

the threshold becomes an embedded eigenvalue and the threshold resonance at its 

other points.  

Аннотация 

Исследуется поведение собственных значений семейства дискретных 

операторов Шредингера H  в зависимости от параметров , R  на 

трехмерной решетке 
3Z . Нелокальный потенциал описывается дельта-

функцией Кронекера и оператором сдвига. Существование собственных 

значений ниже существенного спектра и их зависимость от параметров 

доказаны в явном виде. Мы также показываем, что существенный спектр 

поглощает пороговое собственное значение, и существует особая парабола, на 

левом пересечении которой порог становится вложенным собственным 

значением, а порог становится резонансом в других своих точках 
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Introduction 

Studying spectral properties of the Schrödinger operators have been and still is 

one of the most intensive research areas within mathematical physics and operator 

theory (for recent summaries see [1,2,3,4,5,6,7] and the references therein). It allows 

us to better understand the physical processes associated to those operators. 

Particularly, eigenvalue behaviors of the Schrödinger operators on lattices were 

discussed in many works [8,9,10,11] and were briefly discussed in [11,12,13], provided 

the potential is the Dirac delta function. 
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In this paper we aim to investigate the spectrum of a discrete Schrödinger operator 

with a non-local potential given at the points 3

0 0,x x Z  on the lattice 3( , ]  . We 

explicitly show (Theorem 1) the existence of eigenvalues and resonances of the 

operator and their dependance on the interaction parameters  ,  , 3

0x Z . We show 

the existence of eigenvalues outside the essential spectrum, threshold eigenvalues and 

resonances depending on the parameters   and  , and the sum of coordinates of the 

point 3

0x Z , which creates the non-local potential. The case of the Schrödinger 

operator given with the non-local potential at one point 3

0x Z  was studied in our work 

[14]. In [15] thorough description of the discrete spectrum of similar operators was 

described on lattices 
dZ  for all dimensions 1d  .  

1. The discrete Schrödinger operator 

 1.1 The discrete Schrödinger operator in the position representation 

For brevity, we use the following notations throughout the paper: 
3Z  is the 3–

dimensional lattice and 3 3 3= ( / 2 ) = ( , ]  T R Z  is the 3 -dimensional torus (the first 

Brillouin zone, i.e., the dual group of 
3Z ) equipped with the Haar measure. 

Let 3( ),T y yZ  be the shift operator  

 2 3( ( ) )( ) = ( ), ( ),T y f x f x y f  Z  

then, the discrete Laplacian   on the lattice 
3Z  is described by the self-adjoint 

(bounded) multidimensional Toeplitz-type operator on the Hilbert space 
2 3( )Z  ([16]) as  

 
3

| | 1

1
= ( ( ) (0)).

2
s
s

T s T



 
Z

 

Let 
0V be a multiplication operator in 

2 3( )Z by the Kronecker delta function [ ,0]   

 
0 ( ) = [ ,0] ( ).V f x x f x  

Then, for a given point 3

0x Z , we define the non-local potential (see [16]) as  

 
* * *

0 0 0 0 0 0 0 0 00
= ( ( ) ( ) ) ( ( ) ( ) ) .xV V V T x T x V V T x T x V       

The discrete Schrödinger operator H   acting in 
2 3( )Z , in the position 

representation, is defined as a bounded self-adjoint perturbation of   and is of the form  

 
0

= .xH V    

1.2 Momentum representation of the discrete Schrödinger operator 

 In the momentum representation, the one-particle Hamiltonian H  can be 

expressed as  

 0
0

= ,xH H V   

where 
0H  and 

0
xV  are respectively defined as  

 * *

0 00
= ( ) and = ( ) ,xxH V VF F F F  
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with F  being the standard Fourier transform 2 3 2 3: ( ) ( )L T ZF  and 
* 2 3 2 3: ( ) ( )LZ TF  is its inverse. Explicitly, the non-perturbed operator 

0H  acts on 
2 3( )L T  as a multiplication operator by the function ( )e :  

 2 3

0( )( ) = ( ) ( ), ( ),H f p p f p f L Te  

where 
3 3

=1
( ) = (1 cos ), .jj
p p p  Te  The function ( )e , being a real valued-

function on 
3T , is referred as the dispersion relation of the Laplace operator in the 

physical literature. 

The perturbation 
0

xV  acts on 2 3( )f L T  as the two-dimensional integral operator:  

   i( , ) i( , ) i( , ) i( , )
0 0 0 0

0
3

1
( )( ) = ( ) ,

(2 )

x p x p x s x s

x d
V f p e e e e f s ds 



 
   

T

 

which can be rewritten in a more convenient way as  

   2 3

0 0
0

3

1
( )( ) = 2 (cos( , ) cos( , )) ( ) , ( ).

(2 )
x d

V f p x p x s f s ds f L 


  
T

T  

To avoid writing the factor of 2 before   in formulas, we keep the notation   but 

we mean 2  everywhere below. 

1.3 The essential spectrum of H  

 The perturbation V  of 
0H  is a two dimensional operator, therefore in accordance 

with the Weyl theorem on the stability of the essential spectrum, the equality 

ess ess 0( ) = ( )H H   holds. As 
0H  is the multiplication operator by the continuous 

function ( )e ,  

 
ess min max( ) = [ , ] = [0,6].H e e  

1.4 The Fredholm determinant of H  

 First, for a complex number 
min max\ [ , ]zC e e , let us introduce the following 

notations  

 33

1 1
( ) = ,

(2 ) ( )
a z dt

t z T e
 

 

 0
33

1 cos( , )
( ) = ,

(2 ) ( )

x t
b z dt

t z T e
 

 

 
2

0
33

1 ( , )cos
( ) = .

(2 ) ( )

x t
c z dt

t z T e
 

Then, for any , , R  the Fredholm determinant associated to the operator H  

is defined as a regular function in 
min max\ [ , ]zC e e :  

 2 2( , ; ) = (1 ( )) ( ) ( ) ( ).z b z a z c z a z         
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Lemma 1: The number 
min max\ [ , ]zC e e  is an eigenvalue of H  if and only if 

( , ; ) = 0z  .  

Proof. Consider the eigenvalue equation  

 ( ) = 0,H z f   

which can be rewritten in a more explicit form as  
 

0
0

3 3 3

cos( , )
[ ( ) ] ( ) ( ) ( ) cos( , ) ( ) = 0,

(2 ) (2 ) (2 )d d d

x p
p z f p f s ds f s ds x s f s ds

  

  
     

T T T

e  

with 2 3( )f L T . Denote 

 1 2 03 33 3

1 1
= ( ) , = cos( , ) ( )

(2 ) (2 )
C f t dt C x t f t dt

  T T
 

Then, the above equation is equivalent to the system of linear equations with 
respect to 

1C  and 
2C   

 
1 2

1 2

(1 ( ) ( )) ( ) = 0

( ( ) ( )) (1 ( )) = 0.

b z a z C a z C

b z c z C b z C

  

  

  

   

 (1) 

The solution f  and the coefficients 
1 2,C C  are related as  

  0 1 2

1
( ) = ( cos( , )) .

( )
f p x p C C

p z
   

e
 

 
The Fredholm determinant of the system of linear equations (1) is of the form  

 2( , ; ) =1 2 ( ) ( ) ( ),z b z d z a z         (2) 

where  

 2( ) = ( ) ( ) ( ).d z a z c z b z  

 
For any 

min max\ [ , ]zC e e , ( )a z  is strictly non-zero. Therefore, instead of the 

equation  

 21 2 ( ) ( )
( , ; ) = ( ) = 0

( ) ( ) ( )

b z d z
z a z

a z a z a z
    

 
    

 
 

we can study the parabola (as a function of R )  

 
21 2 ( ) ( )

( , ) := = 0.
( ) ( ) ( )

z

b z d z
P

a z a z a z
        

2. Properties of ( , ; )z   and ( , )zP    

For a fixed 3xZ  consider the function  

 
( , )

min33

1
( , ) = , ( , ),

(2 ) ( )

i x te
r x z dt z

t z
 

T e
e

 

then the functions ( ), ( )a z b z  and ( )c z  can be expressed as ( ) = (0, )a z r z , 

0( ) = ( , )b z r x z  and  0

1
( ) = (0, ) ( , )

2
c z r z r x z , respectively. 
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For the readers convenience we state the lemma from [14] which reveals some 
useful properties of the function ( , )r x z :  

Lemma 2: For any fixed 3xZ , ( , )r x z  is positive and monotonically increasing. 

Moreover, the following asymptotical relation holds  

 
| | 1

1

1
( , ) = ,

| |
x

r x z O as z
z



 
  

 
 

where  
 

1 1 2 3| | =| | | | | |x x x x   

and  

 min

min

( , ) = ( , ).lim
z

r x z r x
e

e  

 
Lemma 3: The functions ( ), ( ), ( )a z b z c z  and ( )d z  are monotonically increasing 

and positive in ( ,0) , and the followings are valid  

min

min

( ) = ( ),lim
z

a z a
e

e  min

min

( ) = ( ),lim
z

b z b
e

e  

 

 min

min

( ) = ( ),lim
z

c z c
e

e  min

min

( ) = ( ).lim
z

d z d
e

e  

We also have the aymptotic relations  

 
1

( ) = ,
| |

a z O as z
z

 
  

 
 

| | 1
01

1
( ) = ,

| |
x

b z O as z
z



 
  

 
 

 
1

( ) = ,
| |

c z O as z
z

 
  

 
 

2

1
( ) = ,

| |
d z O as z

z

 
 

 
 

  

  
( )

= | | .
( )

a z
O z as z

d z
  (3) 

  
Proof. Proofs of the statements involving the functions ( )a z  and ( )b z  follow from 

the equalities ( ) = (0, )a z r z , 
0( ) = ( , )b z r x z  and Lemma 2. The relation  

 2 2( ) = ( ) ( ) = ( ( ) ( ))( ( ) ( )),d z a z b z a z b z a z b z    

the limits  

 0 33
0

min

1 1
= ( ) = ,lim

(2 ) ( )z

a a z
t  T e e

 

 0
0 33

0
min

1 ( , )
= ( ) = ,lim

(2 ) ( )z

cos x t
b b z

t  T e e
 

 
2

0
0 33

0
min

1 ( , )
= ( ) =lim

(2 ) ( )z

cos x t
c c z

t  T e e
 

and the properties of ( )a z  and ( )b z  yield the proof of the statements related to 

( )d z  
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2.1 Properties of the parabola ( , )zP    

Let us start our subsection with the following obvious lemma. 
Lemma 4: (a) For any 

min( , )z  e , the numbers  

 2 1

1 1
( ) = ( ) =

( ) ( ) ( ) ( ) ( ) ( )
z and z

b z a z c z b z a z c z
 

 
 (4) 

are  -intercepts and  

 
( ) ( )( )

,
( ) ( )

a z c zb z
A

d z d z

 
  
 

 

is the vertex of the parabola ( , ) = 0zP   . 

 (b) For any 
min, ( , )z   e  with < z , the inequalities  

 
1 1 2 2( ) < ( ) < 0 < ( ) < ( )z z       (5) 

and  
 

1 2| ( ) |> ( )z z   (6) 

hold. 
Moreover, we have  

 0

1 1 1

min 0 0 0

1
:= ( ) = < 0, ( ) =lim lim

z z

z z
b a c

  
  


e

 (7) 

and  

 0

2 2 2

min 0 0 0

1
:= ( ) = , ( ) = .lim lim

z z

z z
b a c

  
  


e

 (8) 

  
Proof. Simple calculations yield the statement (a). 
(b) Due to Lemma 2, the functions ( ) ( )a z b z  are monotonically increasing in 

the interval 
min( , ) e , therefore the relations  

 

( ) ( ) ( ) > ( ) ( ) ( ) > 0 > ( ) ( ) ( ) > ( ) ( ) ( )a z c z b z a c b b a c b z a z c z          

and  

 0 > ( ) ( ) ( ) > ( ( ) ( ) ( ))b z a z c z a z c z b z    

provide the proof of inequalities (5) and (6).  
 
Next, we prove that in the    plane, the parabolas ( , ) = 0zP    corresponding 

to different values of the parameter 
min( , )z  e , have no common points. 

3. Threshold eigenvalues and threshold resonances of H  

So far, we have studied the equation =H f zf  for 
min( , )z  e . Now, we 

consider it at the left edge 
min=z e  of the essential spectrum with ( , ) l   . 

Definition 1: In the equation min=H f f e , 
mine  is called  

 • a lower threshold eigenvalue if 
2 3( )f L T ,  

 • a lower threshold resonance if 1 3 2 3( ) \ ( )f L L T T ,  

 • a lower super-threshold resonance if 3 1 3( ) \ ( )f L L T Tт  for any 0 < <1т .  
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If 
min=H f f e  has no solutions in 1 3( )L T , then 

mine  is a regular point of the 

essential spectrum.  

For a continuous function 3( )C T  define ( ) = ( ) / ( )h p p p e . The function 

1 / ( )pe  has a unique singular point at the origin = 0p , and approximated as 2( ) | |p pe  

at this point. The lemma below is a straightforward consequence of the definition of h  
and the properties of ( )e  

Lemma 7: The followings hold:  

(a) 1 3( )h L T ,  

(b) if 2 3( )h L T , then (0) = 0 ,  

 (c) if | ( ) |< | |p C p   for some > 0C  and 
1

>
2

 , then 2 3( )h L T .  

In the theorem below, we describe the conditions for 
mine  to be a regular point, an 

eigenvalue or a threshold resonance. 
 Theorem 2: (a) For any 

1( , ) G    or 
0( , ) G   , the threshold 

mine  is a regular 

point. 

(b) The equation 
min=H f f e  has a solution 1 3( )f L T  if and only if ( , ) l  

. Also, 
mine  is  

(b1) an eigenvalue if 0

1=  ;  

 (b2) a threshold resonance if 0

1  .  

Proof. (a) Regularity of the threshold point 
mine  for 

1( , ) G    or 
0( , ) G    

follows from the fact that the corresponding equation 
min=H f f e  has no solutions, 

by Theorem 1. 
(b) To prove part (b) we use the the system of linear equations  

 
0 0 1 0 2

0 0 1 0 2

(1 ) = 0,

( ) (1 ) = 0,

b a C a C

b c C b C

  

  

  

   

 (9) 

which we have shown is equivalent to the equation  

 
1 3

min( ) = 0, ( )H f f L   Te  

in the proof of Lemma 1.4. The solution f  and the coefficients 
1C  and 

2C  are 

related as  

 1 2 03 33 3

1 1
= ( ) , = cos( , ) ( )

(2 ) (2 )
C f t dt C x t f t dt

  T T
 (10) 

and  

  0 1 2

min

( )
( ) = , ( ) = ( cos( , )) .

( )

p
f p p x p C C

p


    

e e
 (11) 

 
Also, consider the different form of the Fredholm determinant of the system of 

(9)  
 

0( , ; ) = ( , ).mz a P     

Next, we prove the statements (b1) and (b2). 
(b1) For the function   in (11), assume that (0) = 0 , then  
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  1 2(0) = ( ) = 0.C C      

Then, the functions   and f  can be written as  

 0
0 1 1

min

(cos( , ) 1)
( ) = (cos( , ) 1) ( ) = .

( )

x p
p x p C and f p C

p
  




e e
 

Taking this into account in (10), we obtain  

 0

0 0 1 1(1 ( )) = 0, . . =b a C i e     

and hence, according to Lemma (3) we obtain that the solution f  belongs to 
2 3( )L T . 

(b2) Let 0

1  . Then the inequalities 0   and (0) 0   and Lemma (3) provide 

the proof of (b2). 
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