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Abstract
Eigenvalue behaviour of a family of discrete Schrodinger operators H,,

depending on parameters A, 1z € R is studied on the three-dimensional lattice Z*. The
non-local potential is described by the Kronecker delta function and the shift operator.
The existence of eigenvalues below the essential spectrum and their dependence on the
parameters are explicitely proven. We also show that the essential spectrum absorbes
the threshold eigenvalue and there exists a particular parabola, on whose left intercept
the threshold becomes an embedded eigenvalue and the threshold resonance at its
other points.

Annomayusn

Hccnedyemces nosedenue coOCMBEHHbIX 3HAUEHUU CeMelcmed OUCKPEmHbIX
onepamopos Illpeouncepa H o 6 3aeucumocmu om napamempos AL ueER na

mpexmeproii pewemxe Z°. Henokanvuwili nOmeHyuan onucbleaemcs Oeibmd-
¢ynxyueri Kpomexepa u onepamopom cosuea. Cywecmeoganue CcOOCMBEHHbIX
3HAYeHUUl HUMCce CYWeCmeeHH020 CHeKmpa U Uux 3Ad8UCUMOCHb OM NApaAMempos
0okazamvl 8 sA6HOM eude. Mvl makdice noxasvleaem, ymo CYWeCmMEeHHbl CHeKmp
nozuowjaem nopo2ogoe cooCmeenHoe 3Havenue, u cyujecmayem ocooas napadoond, Ha
JIeBOM nepeceyeHuu KOmMoOpou Nopo2 CMAHOBUMCS GIONCEHHBIM COOCMBEHHbIM
3HaueHuem, a nopo2 CMAHOBUMCS PE3OHAHCOM 8 OPY2UX C80UX MOYKAX
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Introduction

Studying spectral properties of the Schrodinger operators have been and still is
one of the most intensive research areas within mathematical physics and operator
theory (for recent summaries see [1,2,3,4,5,6,7] and the references therein). It allows
us to better understand the physical processes associated to those operators.
Particularly, eigenvalue behaviors of the Schrodinger operators on lattices were
discussed in many works [8,9,10,11] and were briefly discussed in [11,12,13], provided
the potential is the Dirac delta function.
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In this paper we aim to investigate the spectrum of a discrete Schrodinger operator
with a non-local potential given at the points x,,—x, € Z° on the lattice (—z,z]°. We
explicitly show (Theorem 1) the existence of eigenvalues and resonances of the
operator and their dependance on the interaction parameters ., 4, X, € Z*. We show
the existence of eigenvalues outside the essential spectrum, threshold eigenvalues and
resonances depending on the parameters A4 and x, and the sum of coordinates of the
point x, €Z®, which creates the non-local potential. The case of the Schrédinger

operator given with the non-local potential at one point x, € Z* was studied in our work
[14]. In [15] thorough description of the discrete spectrum of similar operators was

described on lattices Z° for all dimensions d >1.
1. The discrete Schrodinger operator
1.1 The discrete Schrodinger operator in the position representation

For brevity, we use the following notations throughout the paper: Z° is the 3—
dimensional lattice and T° = (R / 22Z)* = (—x, #]’ is the 3-dimensional torus (the first

Brillouin zone, i.e., the dual group of Z*) equipped with the Haar measure.
Let T(y),yeZ?® be the shift operator
T H)=T(x+y), fel?(2°),
then, the discrete Laplacian A on the lattice Z° is described by the self-adjoint
(bounded) multidimensional Toeplitz-type operator on the Hilbert space ¢?(Z°) ([16]) as

A:%Zcr(s)—T(O».

SEZ3
Is|=1

Let V, be a multiplication operator in ¢*(Z*) by the Kronecker delta function J[-,0]
V, f (x) = 8[x,0] f (x).

Then, for a given point x, € Z*, we define the non-local potential (see [16]) as
Vi = AV + (VT (%) +T7 (% )Vo) + (VT (%) +T 7 (%)Vy) "

The discrete Schrédinger operator Hi. acting in ¢%(Z°), in the position
representation, is defined as a bounded self-adjoint perturbation of —A and is of the form

H A = _A —V Xy
1.2 Momentum representation of the discrete Schrodinger operator
In the momentum representation, the one-particle Hamiltonian H,, can be

expressed as
H,,=H, —VXO,

where H, and VXO are respectively defined as

Hy=F"(-A)F and V, =F"(V4)F,
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with F being the standard Fourier transform F :L*(T°)— ¢*(Z%) and
F " ?(Z°%) — L3(T°) is its inverse. Explicitly, the non-perturbed operator H, acts on
L?(T®) as a multiplication operator by the function e(-):
(Hof)(p)=ep)f(p), fel* (T,
where ¢(p) = Z;(l—cos p;) peT?. The function e), being a real valued-

function on T, is referred as the dispersion relation of the Laplace operator in the
physical literature.

The perturbation V actson f e L*(T?) as the two-dimensional integral operator:

V,, 1)(p) =

(ﬂ, + ,U(ei(xo’p) +e 0P 4 g0 4 o0 S))) f(s)ds,

(2)

which can be rewrltten In @ more convenient way as

v, F)(p) = (i+2y(cos(x0, p) +C0s(X,,9))) f (s)ds, f eL*(T?).

(27 )
To avoid writing the factor of 2 before x4 in formulas, we keep the notation . but

we mean 2u everywhere below.
1.3 The essential spectrum of H, ,

The perturbation V of H, is a two dimensional operator, therefore in accordance

with the Weyl theorem on the stability of the essential spectrum, the equality
o..(H)=0.(H,) holds. As H, is the multiplication operator by the continuous

function (),

ess(H/iy) [ min ! max] [O 6]
1.4 The Fredholm determinant of H

First, for a complex number ZGC\[ let us introduce the following

min? max]

notations
) 1
O ol
1 COS(X,,t)
O Gl -z
o(2)= 1 ]2 Vo
pRdE

Then, forany 4, e R, the Fredholm determinant associated to the operator H
is defined as a regular functionin zeC\[e.. ,e._1:

A(A, p;2) = (1~ pib(2))° — p°a(z)c(z) - Aa(2).
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Lemma 1: The number zeC\[e,,, ¢ ] is an eigenvalue of H, if and only if

A4, 1;2) =0.
Proof. Consider the eigenvalue equation
(H,,—2)f =0,

which can be rewritten in a more explicit form as

A
f 0’ )
[e(p) e ) s)d ) 0
with f e L*(T®). Denote
1 1
C = R j f (t)dt, CZ_WITgcos(xo,t)f(t)dt

Then, the above equation is equivalent to the system of linear equations with
respectto C, and C,

{(1—ﬂb(2) — 4a(2))C, - ua(2)C, =0
(=4b(2) — 1c(2))C, + (1~ 1b(2))C, = 0.
The solution f and the coefficients C,C, are related as

f(p)= ((2+ ucos(xy, P))C, + uC,).

1)

6()—

The Fredholm determinant of the system of linear equations (1) is of the form
N, p1;2) =1-244b(2) — p*d(2) - 2a(2), (2)
where

d(2) = a(z)c(z) —b*(2).

For any zeC\[e

equation
Y= 1 2b(2) d(Z) _
A, u;2) = —-11=0
(s a(Z)(a(z) a@) " a@” }
we can study the parabola (as a function of zeR)
1 2b(z) d(z
P, (4, p) = @), 40

a(z) a(z) a(z)
2. Properties of A(A, i;z) and P, (A4, w)

For a fixed x e Z* consider the function
1 el (x)

dt
(27)* 7 ett) - 2

then the functions a(z),b(z) and c(z) can be expressed as a(z)=r(0,z2),

1, a(z) is strictly non-zero. Therefore, instead of the

min? max

u>—A=0.

r(x,z) = Ze(—om,e. ),

min

b(z) =r(x,,z) and c(z) = %(r(o, z) +1(X,,2)), respectively.
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For the readers convenience we state the lemma from [14] which reveals some
useful properties of the function r(x,z):

Lemma 2: For any fixed x € Z®, r(x, z) is positive and monotonically increasing.
Moreover, the following asymptotical relation holds

r(x,z)= O(|Z|];(l+1] as z——oo,
where

| X =1 |+ |+ % |

and

lim r(x,2) =r(x e,).

Z—)&mm

Lemma 3: The functions a(z),b(z),c(z) and d(z) are monotonically increasing
and positive in (—0,0), and the followings are valid

||m a(Z) a( mln) Ilm b(Z) b( mln)

7—>e

||m C(Z) C( mm) I|m d(Z) d( mln)

We also have the aymptotic relations

1 _ 1
a(Z) = O(mj as Z-— —oo, b(Z) = O[WJ as Z-—-—o,

c(z)=0(ij as z— —oo, d(z)=0[i2) as zZ— —oo,
| z| | Z|

ZEZ; O(lz]) as z—>-. (3

Proof. Proofs of the statements involving the functions a(z) and b(z) follow from
the equalities a(z) =r(0,z), b(z) =r(x,,z) and Lemma 2. The relation

d(2) = a*(z) -b*(z) = (a(z) - b(z))(a(2) +b(2)),

the limits

ao:Z'LT_a(Z)_ .[ e(t) Cin
by = limb(2) = @y ks eg(xo:j
% = lime(2) = 7 53 J c:():) (Xor;.tn)

and the properties of a(z) and b(z) yield the proof of the statements related to

d(2)
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2.1 Properties of the parabola P, (4, u)

Let us start our subsection with the following obvious lemma.
Lemma 4: (a) For any z e (—,e.. ), the numbers

1

O e T O I b(z)—«/a(z)c(z) )

are y-intercepts and

A{_ b(z2) Ja(z)c(z)J

’ m|n

d(z)’" d(2)
is the vertex of the parabola P,(1, ) =0.
(b) Forany ¢,z e (—oo,e.. ) With £ <z, the inequalities

14(8) < 14(2) <0< 14,(2) < 11,(&) (5)

and

| 14.(2) > 14,(2) (6)
hold.
Moreover, we have

0 1 .
= lim 4 (2) = ————=<0, limgy(z) = -0 (7)
Z5¢in~ b0 — ,aOCO Z——®

and

My = im 1,(2) = 0 \/— lim £1,(2) = -+ (8)

Proof. Simple calculations yield the statement (a).
(b) Due to Lemma 2, the functions a(z) £b(z) are monotonically increasing in

the interval (—oo,e.. ), therefore the relations

? ~Mmin

va(2)e(2) +b(z2) > Ja(g)e(S) +b(5) > 0>b(S) —ya(f)e(S) > b(z) —ya(z)e(2)

and

0>b(z) -y/a(z)c(z) > ~(ya(z)e(z) +b(2))

provide the proof of inequalities (5) and (6).

Next, we prove that in the 4 — u plane, the parabolas P,(4, ) =0 corresponding
to different values of the parameter z e (—oo,e.. ), have no common points.

3. Threshold eigenvalues and threshold resonances of H_,

So far, we have studied the equation H, f =zf for ze(—o0,¢,). Now, we
consider it at the left edge z =e . of the essentlal spectrum with (2, ) T,

Definition 1: In the equation H, f =¢., f, e is called

« a lower threshold eigenvalue |f f el2(TY),
« a lower threshold resonance if f e L'(T®)\ L*(T?),
« a lower super-threshold resonance if f e L”(T®)\ L'(T?®) for any 0 <m<1.
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If H,,f=¢e f hasno solutions in L'(T®), then e is a regular point of the
essential spectrum.
For a continuous function @ <C(T?) define h(p)=¢(p)/e(p). The function

1/ e£p) has a unique singular point at the origin p =0, and approximated as e(p) ~| p

at this point. The lemma below is a straightforward consequence of the definition of h
and the properties of ¢{-)

Lemma 7: The followings hold:
(@) he L'(T?),
(b) if he L*(T®), then ¢(0)=0,

() if |@(p)|<C| p|* for some C >0 and a>%,then he l*(T%).

In the theorem below, we describe the conditions for e, to be a regular point, an
eigenvalue or a threshold resonance.

Theorem 2: (a) For any (4, i) e G, or (4, u) € G,, the threshold e, is a regular
point.

(b) The equation H, f =e, f hasasolution f e L'(T®) ifand only if (4, ) eT,

. Also, e, is

(b1) an eigenvalue if u= 1;

(b2) a threshold resonance if u# 11, .

Proof. (a) Regularity of the threshold point e.. for (1,4)eG, or (1,u)eG,
follows from the fact that the corresponding equation H, f =e., f has no solutions,

by Theorem 1.
(b) To prove part (b) we use the the system of linear equations

{(1_ by — 28,)C, — 1a,C, =0,
(=Aby — u€,)C, + (1— 4,)C, = 0,
which we have shown is equivalent to the equation
(H,~ ) =0, fel(T%)
in the proof of Lemma 1.4. The solution f and the coefficients C, and C, are
related as

©)

C= 5 )j £ (t)dt CfﬁLBCOS(XO,t)f(t)dt (10)

and

£(p)=— 2L 4(p) = ((4-+ uoos(, P))C, + 4Cy). (11)
e(p)_&min

Also, consider the different form of the Fredholm determinant of the system of

(9)
A4, 11,2) = 3R, (4, ).
Next, we prove the statements (b1) and (b2).
(b1) For the function ¢ in (11), assume that #(0) =0, then
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#(0) = ((A+u)C, + uC,) = 0.
Then, the functions ¢ and f can be written as
CoS(X,, p) -1
@(p) - 0min

¢(p) = (cos(Xy, p) -1)uC, and

Taking this into account in (10), we obtain
(1- (b, —a,))C, =0, ie. p=u
and hence, according to Lemma (3) we obtain that the solution f belongs to
L*(T?).
(b2) Let u# 42. Then the inequalities A =0 and ¢(0) = 0 and Lemma (3) provide
the proof of (b2).
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